Speech to Speech Translation
By Bryant McArthur and Wade McMillan
Linguistics 581

Natural Language Processing



Abstract:

The main goal of this project was to find a
way to implement a speech to speech
translation method and become involved
to understand each level of the process as
we could. In this paper we will discuss
related research and other similar projects,
frameworks and tools used, things we
built, as well as results, and opportunities
for further research.

Related Work:

2014 Microsoft Segmentation and
Disfluency Removal for Conversational
Speech Translation:

This paper is about how Microsoft
was able to overcome disfluencies in
speech to improve real-time conversational
speech to speech translation systems. They
proposed a new way to remove
disfluencies in two steps as opposed to the
conventional one-step method. This
method proved to increase the quality of
the speech translation by as much as 3
Bleu points with only 6 second latency to
look ahead.

2019 Google Leveraging Weakly
Supervised Data to Improve End-to-End
Speech-to-Text MT:

This paper compared and
contrasted the pros and cons of end-to-end
speech translation verse the cascade of
Automatic Speech Recognition, text
Machine Translation and text to speech
synthesis. One difficulty to speech to
speech translation is the lack of data to
train a model, but this paper demonstrates
how a quality system can be trained using
only weakly supervised datasets and

synthetic data sourced from unlabeled
monolingual speech.

This paper described how without
careful methods and a long process the
direct end-to-end model will likely not
outperform the traditional cascade
approach from ASR to text Machine
Translation especially with a low resource
language.

Because of the complex nature that
arises in both disfluencies in natural
language and a lack of training speech data
to train a model, these articles persuaded
us to use the more traditional cascade or
waterfall approach to flow from speech to
text to translated text and back to speech.

Question:

The need for effective speech to speech
translations continues to grow as the world
becomes increasingly global. Business
exists on a worldwide scale but language
is a constant barrier. While several systems
exist there exists a clear need for
improvement in terms of speed, quality,
and language variety.

Implementing a Speech to speech
translation system can take one of two
approaches, a genuine speech to speech in
which audio waves are given as the input
read directly through a neural network and
then output as audio waves. Or there is a
waterfall approach in which audio waves
are first turned into text, then translated
using a standard text to text translation
system and finally being turned into audio
files at the end. For the scope of this
project we decided to use the waterfall
approach and explain each step of the
process, tools used, and any
customizations we made.



Method:
Speech to Text:

Converting Speech to Text is the
first step in the process and will carry
through all the continuing steps of the
process. This makes quality on this step
essential if our output is to have any
meaningful value. Thankfully there are a
variety of systems that exist that enable
this operation. We selected to use
Microsoft Azure’s existing version for our
project.

This made this step relatively
simple as they have powerful built-in
commands that make it easy to use. It is
subscription based so a subscription key
needs to be provided as well as the
language it should be listening for as you
build one of their Speech Configuration
Objects that will then listen for that
language.

Two great qualities of Microsoft
Azure’s ASR system is first, the basic
removal of disfluencies and second, the
addition of punctuation. Both of these
tasks are improved by the use of an
N-gram language model built into the
system. Microsoft Azure does not
implement the same amount of disfluency
removal as given in their 2014 paper
referenced above, however it does a fine
job at removing simple disfluencies from
the text to output only what was said.
Moreover, with the addition of proper
punctuation it improves the translation
quality after pushing it through the MT
model, especially when multiple sentences
are spoken into the system.

It does have a major drawback in that it
stops listening after any major pauses and
then converts it to text and has to be
reassessed if you want to process any more
speech data.

As part of our project and our
commitment to quality we built in a
feature that enables users to view the text
as the machine heard it and manually edit
it if they so desire. This is one way that we
decided to incorporate Human Assisted
Machine Translation or HAMT into our
project.

HAMT is a common practice for
ensuring high-quality results usually after
an MT system has output results, this is
slightly different because we are putting it
in the middle of what would be considered
our translation process but we found it to
be a good fit in usability because of the
quality assurance that it gives users and
potential users.

Machine Translation:

Originally we just used a variety of
existing Machine Translation systems as
the middle, but to increase involvement we
decided to build our own model for the
language pair of Polish and Spanish,
selected because of their morphological
differences, different language families,
and general unrelatedness. Additionally
we each speak one of these languages
which allows for better human evaluation
which is key in determining actual quality
of a machine translator.

The first step in creating a machine
translation tool is data. We decided to get
our data from Opus Corpus, a free
bilingual corpora repository. We selected
to use their data from TED Talks 2020,



wikipedia translated sentences and the
corpus from “MultiPara Crawl” which
gave us roughly 800 thousand translation
memory pairs before cleaning. This data
was relatively clean to begin with, but to
be safe we decided to use a cleaning
pipeline using Olifant and Rainbow by
Okapi. This made it easy to remove
duplicates, extra line breaks, uneven
quotes, inline tags, unwanted non-word
characters, and other common noise in
data.

The next step was selecting a
development environment and framework
for training our model. We decided to do it
in Python as it is a leading language for all
forms of data science and machine
learning with lots of powerful packages.
To train a model a GPU is necessary to
perform a meaningful number of training
steps. In order to achieve this we elected to
use Google Colab Pro.

The most important part of this was
selecting an appropriate training network.
We elected to use OpenNMT. Other
common NMT frameworks are Marian,
Sockeye, FairSeq, Tensor2Tensor,
Nematus and NeuralMonkey.

The two best candidates would be
Marian and Sockeye. Marian is a very high
quality customizable framework based in
C++ used more for large scale research
and commercial purposes. Like
OpenNMT, Sockeye is also written in
python, but attempts to include
Self-Attention Transformer, and
Convolutional models as opposed to just
RNN models.

By using either one of these other
candidates we may see a slight increase in
translation quality, but that would come at

a cost. Both these other systems are more
complex to implement than using
Py-Torch and OpenNMT’s easy
configurations. Also because of their many
encoding and decoding layers and various
models it would require a large amount of
space and time to train these models. For
this reason we decided to go with
OpenNMT-py.

OpenNMT has lots of different
configuration options that we
experimented with until we found what we
felt was our best fit.

The main basic configurations
involve where to load training and
validation data and where to save the
source and target vocabulary.

We created a model with 6
encoding layers and 6 decoding layers of
transformers. Because we were training
the data on tokenized sentences rather than
normal text we added the parameters,
“batch_type: tokens” and “normalization:
‘tokens’” with a batch_size of 4096. This
tells the model how many tokens to train
on during each step of the training phase.
Likewise, we set the valid_batch_size to
4096 as well to keep things consistent.

For the model we also added a
dropout rate and attention_dropout rate
both at [0.1]. This is standard practice to
reduce the risk of substantial overfitting.
However because we included this dropout
rate it does roughly double the number of
iterations required for the model to
converge.

For our model dtype we chose to
use “fp32”. This represents the Floating
Point format for the activations, weights



and input of the model. Most Machine
learning models use FP32 or FP16.

The parameter “optiml: ‘adam’”
refers to the optimization method. Adam is
a “replacement optimization algorithm for
stochastic gradient descent” and very
adaptable. Our corresponding
learning_rate was set to 2 (which really
means .002) in order to minimize the loss
function.

Of the OpenNMT decay methods
we chose to use “noam” which works well
with Adam. Having a constant learning
rate is very difficult so noam normalizes
the rate in order to make weight-decay per
parameter.

We set our label smoothing to .1.
Label smoothing is a “regularization
technique” to prevent the model from
predicting output tokens too confidently
during training and generalizing too
poorly.

We opted to include positional
encoding. Position encoding helps by
describing the position of the word so that
each position is assigned a unique
representation. Although Polish and
Spanish may grammatically change the
position of words, they tend to follow a
similar general pattern and are also fairly
consistent within their respective domain.
Positional encoding is not always a
positive inclusion for all language pairs.

There are also several more
configurations we included that we did not
describe, and many more optional
configurations provided by OpenNMT.

To split the data into train, test, and
validation sets, we decided to save the
bulk of the data for training and set aside

3000 lines for test and validation sets
using Sci-kitlearns built in packages on
our already cleaned data.

One important part of building our
model was deciding on a tokenization
model to use. While OpenNMT has
several available for use we decided to
build our own. The purpose of
tokenization is to reduce the number of
unknown translations for our model. This
is down by breaking words into smaller
pieces. We did this by breaking it down to
the lemma and then having the endings
separated to go into the machine as a
separate token. This helps match
languages that have varying morphological
complexity. Tied with this is also
determining how large of a vocab size to
use when training the model. Because
Polish is much more morphologically
complex than Spanish it requires a higher
vocabulary size. After testing different
vocab sizes, the optimal sizes that worked
for our models were 8000 for Spanish and
12,000 for Polish.

In order to evaluate and get a
representation of the performance of our
model we chose to use BLEU scores.
While OpenNMT has the option to stop
automatically once the change in BLEU
score isn’t significant in the positive
direction we elected to not use this option
because we found that we had occasional
rises and falls in our scores over time. We
found that at around 250,000 steps we
reached what seemed to be a fairly stable
plateau and while it might be a local
optimization due to our usage of a base
learning rate we were satisfied with the
results achieved after this many iterations.

For the other language pairs we
elected to continue to use Microsoft's



existing models allowing us to provide
high quality output for a variety of
languages with one pair being designed
and built by us. Microsoft being a
multi-billion dollar commercial company
heavily invested in machine translation
does produce better outputs in general for
this language pair. Additionally, our model
does have a smaller domain than Microsoft
standard models but it still does provide
good results and relatively high BLEU
scores. Throughout the process we
continued to add additional data to try and
increase the vocabulary and diversity of
our model.

Text To Speech:

To go from Text to Speech or
Speech Synthesis was the last step of our
project in terms of going all the way from
speech to speech. This task is commonly
referred to as Speech Synthesis and to do
this task we used Microsoft Azure as a
resource and coded it in python, in
Pycharm, because unlike our previous task
of MT we no longer had need for a GPU
and having a stable environment that
doesn’t time out.

Speech Synthesis is a complex task
composed of many parts. First the system
has to tokenize the input. This is important
because depending on where a word falls
in comparison with other words, for
example two words might be spelled the
same way but because it is being used in a
different sense be a different part of speech
the pronunciation can vary significantly.
This is why it is important that the first
step is performed at a high level.

Then after the preprocessing the
tokens are converted into phonemes, or a
textual approximation of the auditory

sound. To finish the process these
phonemes are then synthesized into audio
by using models that have been trained to
approximate features such as pitch,
intonation, and other sound qualities. This
is the basics of the process of synthesizing
text to speech.

Microsoft’s Azure resource has
several trained models for each language.
In order to add valuable customization to
our project we added the general male and
female voice for each language so that
users are able to select a speech output that
would be more representative of their
speech.

An advanced service is offered
wherein those with applications to
Microsoft’s speech services are able to
train their own language onto the model
and an approximation of their voice in the
other language would be output. This is a
very interesting opportunity for further
research and advancement of our project
that we will discuss in further detail later
in the paper.

The final step in turning our work
into practical application was to combine
these steps in a meaningful and effective
way. This was done through building an
interactive GUI. This actually adds more
value than we initially thought. It first
allows for a user to select language pairs
and voice options easily making
customization, which can be tricky when
using services. Then it also allows for
people to perform manual checks as
mentioned to ensure that they are satisfied
with the intermediary results of the
process. We even provide the option for
manual editing to ensure the highest user
satisfaction possible.



Results:

Primarily the part of the system that
we were most interested in evaluating was
the translation portion as most of the
services have high quality as they are
Microsoft’s commercial grade systems.

Evaluation of machine translation
systems and establishing good quality is a
difficult process. There are several
different systems in place such as
COMET, and BLEU. However, essential
to remember regarding any evaluation
metric is that they don’t paint a picture and
that human evaluation is essential. That is
why the bilingual model we chose to train
was Spanish and Polish based as we have
relative fluency combined in both these
languages allowing for competent human
evaluation. Having a single model makes
establishing a formal metric for
comparison difficult but we were able to
see that for the most part the translations
are of high but definitely imperfect quality
with unknown translations being one of
our larger issues.

The non-human evaluation metric
we chose to use was BLEU due primarily
to its high acceptance rate. Several
versions of BLEU exist as people have
tweaked the hyper parameters of the
program. We used SacreBLEU to be as
standardized as possible.

We trained for 250000 iterations
and tested BLEU scores every 8000
iterations so that we could select the high
for operation. We stopped at this point
because we found that the results had
plateaued at 30.7 BLEU points.

Originally, we had trained on a
smaller vocabulary and diversity of topics

and if you watched the video associated
with this paper we had a BLEU score of
around 35 which is higher than our current
BLEU score. This is because we now
handle a wider variety of topics at a
slightly lower level. This is a good
illustration of how BLEU scores are not
representative of the whole story because
while the model had a better score for its
training set before we added in more data,
the overall usefulness of the original
model is less than our final model.

Our final BLEU score of 30
represents a lower than average BLEU
score for a commercial model however
BLEU scores are best used looking for
significant differences in results between
models for the same language pair.
However it can still be considered a decent
score as BLEU points are better for
comparison than a blanket quality
statement.

Our human evaluation of the model
found that for the most part our model
produced human readable and
understandable content. We found it to
perform quite well in terms of adequacy.
This means that the translation tended to
match the intended meaning of the other
sentence at high rates. In terms of fluency
or how well the model sounds like a native
speaker. This is more about proper
grammar and style than about substance.
Our model had medium but acceptable
fluency for the purposes and scope of this
class. Overall the translation model
performed well and had satisfying results.

The rest of our speech to speech
platform including a variety of other
bilingual translation options are microsoft
services and so their quality is at a
professional and commercial level. The



combination of tools, services and our
Polish to Spanish model evaluated as a
whole would be describable as a really
effective and interesting result as it is easy
to use and consistently gives the desired
output when run through the system as a
whole.

Further Work:

There is a lot of potential work that
could be done to further this project.
Things that we will discuss are
speech-to-speech direct, refining the
language model, and additional features.

For our speech translation we used
the common waterfall approach that is
effective and fast, but going direct is
theoretically better. This is where instead
of going first to text and then translating
and then synthesizing back into audio, you
take in audio files and train a neural
machine network with audio as the output
as well. This has shown really good results
for others but the lack of available data
made this impractical for our project. If we
were able to get enough bilingually paired
audio data this would be an effective and
incredibly interesting progression of this
project to be able to explore differences in
both final quality and speed.

Our language model while effective
there is also plenty of room for
improvement. We could have trained using
a different framework or using an LSTM
rather than an RNN network. Different
training methods or learning rates provide
a lot of room for changing hyper
parameters and exploring potential
combinations to optimize our output. Due
to training time requirements though we
stayed relatively close to the default
parameters.

One additional feature that would
be meaningful and extremely cool would
be to experiment with training our own
voices on the output to reach a higher level
of customization. Microsoft Azure offers a
service wherein voices can be recorded
and depending on the quantity and quality
of the recordings a voice option which
would allow users to then use our voices
or any voices that we trained with legal
permission. This is a really cool feature to
explore in future research and
development.

Another option to explore would be
experimenting with having our GUI
interact with the model in a way that
records when users make changes to any
part of the output and is able to then record
and update that. Difficulties with this are
that even though a flaw in output has been
identified, fixing it without paying the
high costs of retraining a model is almost
impossible. This is a cutting edge topic
currently in translation and for any
interested in furthering our research this
piece of the field comes highly
recommended.

Conclusions:

Speech to speech translation is a
rapidly growing field with high demand
and important use cases. In our research
we explored powerful frameworks and
tools that can be combined to make
meaningful user experiences. We were
able to use Microsoft Azure services to
deal with speech to text and text to speech,
and some language pairs. We also were
able to use openNMT to build a relatively
high quality machine translator for polish
to spanish.



