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Abstract 

We propose a sequence-to-sequence LSTM 

attention-based neural network to perform 

machine end-to-end speech translation 

from German to English. This network is 

trained on German Mel-spectrograms to 

predictively generate corresponding 

English Mel-spectrograms, which can then 

easily be transformed back to audio 

waveform. We propose modifications to 

current SOA models to improve ease of 

implementation, training stability, and 

generalizability for future end-to-end 

speech translation models. In practice, this 

architecture was specifically built for 

performing speech translation of German 

audio into English, but may be easily 

trained on any language pair.  

1 Introduction 

Recent MT research has provided evidence that 

the quality of an End-to-End Speech Translation 

system could potentially match or outperform 

that of the traditional “cascaded” system. There 

is noise and increased error introduced to a 

cascaded system, especially in the ASR step that 

grows when passed through the following 

models. In order to eliminate unnecessary error a 

direct speech to speech model may be used. 

Google’s “Translatotron” (Jia et al. 2019) was 

one of the first attempts to improve the cascaded 

approach. It consists of a direct Speech-to-Speech 

model using a generative sequence-to-sequence 

convolutional neural network (CNN) similar to the 

architecture of “Tacotron” (Wang et al. 2017). The 

model takes as input the Mel-spectrogram of the 

source language audio and generates a predicted 

Mel-spectrogram in the target language.  

Google’s “Translatotron2” (Jia et al. 2021) 

closely follows the architecture of Translatotron 

(Jia et al. 2019) except that it also incorporates a 

speaker encoder to capture features of the spoken 

language in order to concatenate them to the 

embeddings and transfer speech naturalness 

through the translation.  

Google’s Translatotron and Translatotron2 are 

considered current SOA models, however some 

simple adjustments can be made to make the model 

more robust for implementation and training and 

improve quality of generalizability. 

We will attempt to build an end-to-end speech 

translation system modifying the architecture of 

Google’s Translatotron (Jia et al. 2019) in order to 

make it simpler and easier to use, resolve a 

common issue of exploding gradients in neural 

networks, and implement some more recent 

practices for improving any CNN. 

2 Related Works 

Google’s Tacotron (Wang et al. 2017) and  

Translatotron (Jia et al. 2019) are CNNs using a 

generative sequence-to-sequence model. They both 

incorporate audio and Mel-spectrograms. In order 

to alternate between audio, spectrograms, and back 

to audio they wrote in-house functions including 

the short-time Fourier transform to go from audio 

to spectrogram, and the Griffin-Lim (Griffin and 

Lim 1984) algorithm to go back from spectrogram 

to audio. 

These in-house functions are difficult to 

manage, work with, interpret, and scale for various 

audio file types. TorchAudio (Yang, et al. 2022) is 

an easy-to-use, versatile python package with 

various speech processing tools. Some of these 

tools include the Mel-spectrogram and inverse 

spectrogram transformations as well as the Griffin-
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Lim (Griffin and Lim 1984) algorithm. All of 

TorchAudio is compatible with PyTorch Tensors 

for training and developing deep neural networks. 

Furthermore, Tacotron (Wang et al. 2017) and  

Translatotron (Jia et al. 2019) use Dropout and 

Batch Normalization as regularization techniques 

in their CNN. Research done by Xiang Li, et al. 

(2019) shows that Dropout and Batch Norm should 

generally not be used simultaneously, especially in 

CNNs because they create a “disharmony by 

variance shift” from training to inference time that 

may cause “erroneous predictions”. Their findings 

suggest batch normalization generally has a better 

overall effect than dropout. 

We will incorporate both of these resources into 

our model adaptations by replacing delicate in-

house functions with the more robust TorchAudio 

methods, as well as removing dropout layers from 

the CNN to solely rely on batch normalization as a 

regularization technique. 

3 Data  

3.1 LibriS2S 

We used the LibriS2S dataset by Pedro Jeuris built 

for training direct speech to speech machine 

translation models (Jeuris and Niehues 2022). This 

dataset contains approximately 40 hours of source 

and target aligned speech in German and English 

by several different speakers. This dataset was built 

off of the LibriVoxDeEn corpus for speech 

translation and speech recognition (Beilharz et al. 

2020). LibriVoxDeEn contains aligned triplets of 

English audio, English text, and German text. The 

LibriS2S dataset contains corresponding German 

audio from LibriVox for approximately half of the 

original LibriVoxDeEn dataset to create the 

quadruplets now found in LibriS2S. 

Nobody has used and cited this dataset yet to 

train a direct Speech-to-Speech translation model. 

As opposed to Google’s datasets used for 

Translatotron (Jia et al. 2019) and Translatotron2, 

(Jia et al. 2021) we will not be using synthesized 

speech for training. All the German and English 

recordings in LibriS2S are authentic speakers to 

help retain speech naturalness during training time. 

The LibriS2S (Jeuris and Niehues 2022) dataset 

contains approximately 40 hours of speech for both 

German and English for a total of 80 hours. In 

comparison, Translatotron (Jia, et al. 2019) used 

approximately 100 hours of speech for both source 

and target languages. 

4 Methodology 

Below is an outline of the baseline model and our 

proposed adjustments as well as our evaluation 

approach. 

4.1 Translatotron Baseline 

First, we built our baseline model to closely 

resemble the architecture of Google’s Translatotron 

(Jia et al. 2019). We used the code publicly 

available from Tacotron (Wang et al. 2017) and 

made the proper adjustments noted by the authors 

of Translatotron to ensure everything matched. 

Early testing showed that the given 

preprocessing functions to convert audio to Mel-

spectrograms for the DataLoader were 

incompatible with my audio files. At this point, we 

made the switch to TorchAudio (Yang, et al. 2022) 

for all preprocessing. It is easy to convert audio to 

Mel-spectrogram and back to audio with any file 

type and it provides built-in methods for easy 

plotting and visualization. 

However, even after this switch for the data 

preprocessing, training the model was quickly cut 

short because of the issue with exploding gradients. 

We were never able to train a model for any 

substantive or promising results using the Tacotron 

(Wang, et al. 2017) code and proposed 

Translatotron (Jia, et al. 2019) alterations. 

4.2 Single Training-Instance Model 

We made several modifications to the architecture, 

parameters, and hyperparameters of the baseline 

model above and then used a single training-

instance technique to show at the very least that our 

proposed model “works” and is able to “memorize” 

and reproduce the single instance it was trained on. 

The first modification done was to the 

preprocessing as stated above using TorchAudio 

(Yang, et al. 2022) for easy implementation. 

The second problem fixed was that of exploding 

gradients. We first adjusted the data normalization 

in the DataLoader. Originally, the data normalizer 

scaled the values of spectrograms, which ranged 

from [0, 60000], by using a logarithmic function 

log(x)/C to map the values to [-1, 1].  The negative 

values and the density of values around zero added 

to exploding gradients and other issues from 

activation functions. We simply changed the 

function to be log(x+1)/C to logarithmically map 

the values to [0, 1].  
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Next, we changed every occurrence of tanh 

activation functions to LeakyReLU. It is well 

known that the tanh activation function may cause 

problems with exploding and vanishing gradients 

that ReLU and LeakyReLU can help fix in many 

cases.  

Third, we simply implemented gradient 

clipping. Instead of clipping the gradient norm like 

Tacotron (Wang, et al. 2017) and assumingly 

Translatotron (Jia, et al. 2019), we clipped the 

actual value of the gradient to avoid any possibility 

of explosion. While this method ensures we will 

not encounter exploding gradients in training time, 

adjusting the data normalization and switching the 

activation functions help ensure very large 

gradients are less likely to actually occur during our 

optimization step. 

Finally, we made some other slight 

modifications to help during training time and 

increase generalizability of the model, i.e. increase 

the accuracy of testing for a broader range of data 

input. We did this by adjusting the regularization 

techniques and the learning rate. 

As for the regularization, we follow Xiang Li, et 

al. (2019) and eliminate the use of dropout when 

both batch normalization and dropout were being 

used on convolution layers.  

For our learning rate we use a cyclical learning 

rate between 1e-3 and 1e-6 as per Leslie Smith 

(2017). The method of using an exponentially 

decreasing cyclical learning rate allows us to 

descend our loss function quickly at the beginning 

of training time and find a more precise minimum 

in later training time while still being able to jump 

out of local minima. 

With all of these adjustments we trained our 

model with a single sentence to ensure the model 

would be able to memorize and reproduce that 

given sentence in testing. 

4.3 Training Full Dataset 

Lastly, we started the training of our model using 

our adjusted architecture and hyperparameters on 

the full dataset. Even though we distributed the 

training onto six Nvidia A100 GPUs it is unlikely 

the model will converge in a reasonable time with 

the resources we have. However, we will evaluate 

preliminary results to better understand the 

promises of our architecture. 

4.4 Evaluation 

In order to evaluate the quality of the translation 

from the single-training instance model we use the 

standard ASRBleu. We simply run an automatic 

speech recognition (ASR) on the predicted audio 

file and then run the Bleu score (Papineni, et al. 

2002) on the resulting text to compare it to the 

reference. 

We will rely on the training and validation loss 

plots, the gradient norm plots, as well as a human 

evaluation on the progress of predicted Mel-

spectrograms during validation steps of the training 

of our full dataset to show how promising our 

proposed model is in practice. 

5 Results  

No results are mentioned for the baseline model. 

Our baseline model following Translatotron (Jia, et 

al. 2019) would only prematurely stop training due 

to exploding gradients. For this reason, we 

proposed certain adjustments, and we evaluate the 

training process of our proposed model. 

5.1 Single Training-Instance Model 

With our proposed methodology we were able to 

train a model that successfully memorized a single 

training instance and reproduce that instance with 

minimal loss.  

As you can see in Figure 1, the two Mel-

spectrograms closely align with just a little noise 

added into the prediction. 

When we converted our prediction to audio form 

the speech itself exactly matched the reference 

audio. There was additional white noise as if the 

 

Figure 1: English Mel-spectrograms for predicted 

(top) and target (bottom) audio. 
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speaker was speaking through a fan, but all the 

words were distinguishable to the human ear.  

Unfortunately, when we ran ASR on the output 

of the text it greatly underrepresented the accuracy 

of the ‘translation’.  

Our reference English text was, “THE studio 

was filled with the rich odour of roses, and when 

the light summer wind stirred amidst the trees of 

the garden, there came through the open door the 

heavy scent of the lilac, or the more delicate 

perfume of the pinkflowering thorn.” The output of 

the ASR was, “The studio was filled with the rich 

owner of roses I went to Light Summer Windstar 

damage the Trees of the garden there came through 

the open door the heavy scent of the Lilac or the 

more delicate perfume.” 

The ASR mixed up ‘odour’ with ‘owner’, ‘and 

when the’ with ‘I went to’, and ‘wind stirred 

amidst’ with ‘windstar damage’. It also completely 

missed the end of the sentence, “of the 

pinkflowering thorn”.  

The predicted audio only received an ASRBleu 

score of 40.68 because of these errors due to the 

ASR and not our proposed model or methodology. 

This result alone makes us very skeptical of any 

ASRBleu scores, however it must be used because 

it is currently the norm for evaluating speech to 

speech translation models. Ideally when evaluating 

a full training set we will also use BLASER (Chen, 

et al. 2022) a “text-free” evaluation metric 

specifically built for Speech-to-Speech translation, 

and human evaluations. 

5.2 Training Full Dataset 

Due to resources, we were not able to finish 

training our model on the full dataset. However, we 

are able to get a glimpse at its promising ability by 

the training and validation loss plots, gradient norm 

plot as well as the progress of predicted Mel-

spectrograms in the validation steps. 

As we can see from the loss plots in Figure 2, 

when training was terminated neither of the loss 

plots had yet converged and were still continually 

decreasing. This denotes that further progress 

would be made if training were to continue. 

We are able to clearly see from Figure 3 that the 

issue with exploding gradients approaching infinity 

was resolved by our techniques. We used a gradient 

clip value of 5 which helped keep the gradients 

small at the very beginning of the training. 

However, for the majority of our training steps the 

gradient norm was kept below .05 and our gradient 

clipping was never used. The real advantage to our 

methodology was adjusting the data normalization, 

activation functions, and learning rate. 

From Figure 4 we can see the progression of 

Mel-spectrograms. It does not require a trained eye 

to see that the two bottom predictions (3rd row) for 

steps 31,800 and 43,000 much more closely align 

with the target Mel-spectrograms (4th row) than the 

top two predictions (1st row) for steps 4,200 and 

6,600 with their target Mel-spectrograms (2nd row). 

 

Figure 2: Training loss (right) and validation loss 

(left) of distributed training on full dataset. 

 

Figure 3: Gradient Norm plot of distributed 

training on full dataset. 

 

Figure 4: Predicted and Target Mel-spectrograms 

for various validation steps. Top Left: Step 4,200. 

Top Right: Step 6,600. Bottom Left: Step 31,800. 

Bottom Right: 43,000. 
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This shows promising preliminary results that the 

model is successfully learning how to generate 

accurate Mel-spectrograms.  

The Mel-spectrograms at step 43,000 are still 

not developed enough to convert to an audible 

waveform, however these results give us 

confidence that with further training the model 

would converge just as it did with the single-

instance training. 

6 Conclusion 

In conclusion, we have improved the SOA direct 

Speech-to-Speech translation model Translatotron 

(Jia, et al. 2019). Our proposed preprocessing with 

TorchAudio (Yang, et al. 2022) lends to more 

versatile use cases for various file types and easy 

implementation. We have shown certain techniques 

may be used to handle and mitigate the probability 

of exploding gradients in training time. And finally, 

we use a Cyclic learning rate (Smith 2017), 

LeakyReLU activation function and more current 

methods for regularization in a CNN by using only 

batch normalization and removing dropout (Li, et 

al. 2019) to improve training and generalizability at 

inference time.  

7 Future Work 

Our top priority for future work is to acquire the 

resources to complete the training of our full 

dataset. This will require much more than six A100 

GPUs. After complete training we will be able to 

make proper evaluations on the quality of our 

translation system compared to current SOA 

systems. 

We have shown ASRBleu is unreliable as an 

evaluation metric and hope to move to BLASER 

(Chen et al. 2022) and human evaluations. 

BLASER as a “text-free” evaluation metric 

specifically built for Speech-to-Speech translation 

shows promise and appears to be a much more 

reliable measure of quality for Speech-to-Speech 

models. 

Furthermore, Automatic Dubbing is a MT 

constrained problem where the model attempts to, 

above all, retain timing constraints (isochrony) 

without sacrificing the translation quality. There is 

current research engineering cascaded models to 

meet these constraints, but there lacks development 

for the automatic dubbing problem in a direct 

Speech-to-Speech model.  

Brannon, et al. (2022) analyzed Amazon Prime 

videos to determine how humans actually perform 

dubbing to obtain insights needed to improve 

automatic dubbing. They found that translation 

quality is of paramount importance, and although 

there are high rates of isochrony, speech tempo is 

of higher priority. This means, while human 

dubbing tries to meet isochronic constraints they 

are not willing to vary speech tempo to achieve 

isochrony, nor are they willing to significantly alter 

the meaning of the sentence and sacrifice 

translation quality for a shorter or longer target 

sentence to match the source. Brannon, et al. 

(2022) also found “strong evidence for several 

levels of non-textual transfer” including emotional 

features such as pitch, energy and vocal profiles to 

replicate in synthesizing natural target speech. 

In a follow-up work with Amazon Prime videos, 

Chronopoulou, et al. (2023) built a model that 

largely maintained isochrony without much loss of 

translation quality. Although the model was a step 

in the right direction for isochronic MT, they used 

the conventional cascaded approach of ASR, MT, 

and TTS rather than a direct method. 

We propose follow-up work to this paper to not 

only continue training this model for direct German 

to English Speech translation with proper 

resources, but also to incorporate isochrony, 

prosody, and other emotional features into the 

model by simple adjustments to the loss function to 

penalize over- and under-generation and adding a 

speaker encoder similar to the one found in 

Translatotron 2 (Jia et al. 2021). 
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